
DOI: 10.2478/9788367405805-033 

© 2024 S. Sbîrnă & L.-S. Sbîrnă. This is an open access article licensed under the Creative Commons 

Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/) 

https://doi.org/10.2478/9788367405805-033 

 

IMPLEMENTING JACOBI ALGORITHM VERSUS GAUSS-SEIDEL 

ALGORITHM IN SOLVING A DISCRETIZED PROBLEM  

SEBASTIAN SBÎRNĂ1, LIANA-SIMONA SBÎRNĂ2 
1DTU Compute Department, Institute of Applied Mathematics and Computer Science, Technical University of 

Denmark, Anker Engelunds Vej 1, Building 101A, Kongens Lyngby, Denmark, seby.sbirna@gmail.com 
2Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Bucharest Way, Craiova, Romania, 

simona.sbirna@gmail.com 

As it is well known that performance of algorithms generally relies both on the hardware that they are 

run on and on the way that they are implemented and executed the present paper aims to show that the 

executions’ wall-clock time might be affected by parallelizing the code, although this could sometimes 

become a hard task. Within this work, based on Poisson partial differential equation, we shall present 

different aspects of a comparison between implementing Jacobi algorithm in solving a discretized 

problem and implementing Gauss-Seidel algorithm in solving the same. On one hand, the results obtained 

by implementing the Jacobi algorithm benefited very much from the parallelization, so the first case has 

shown both good performance and scalability when introducing supplementary threads; as its structure 

always needed to exhibit a complete data copy computed in its former iterations, it became easier for us 

to have the code parallelly executed, because there was an insignificant risk of data races’ hitting. On the 

other hand, the results obtained by implementing the Gauss-Seidel algorithm managed to solve the 

discretized problem, although its performance was not as good as the one of the Jacobi algorithm, so the 

second case has shown a good execution performance in varying sizes of sequentially executed data, 

taking into account that, as far as parallelizing was concerned, the performance was unreliable and random. 

Keywords: Jacobi algorithm, Gauss-Seidel algorithm, Poisson partial differential equation.  

INTRODUCTION 

As the Poisson equation lately becomes an interesting topic in describing the heat 

distribution within a uniform environment, we shall analyze through this paper the model of a 

cubic room, for which we shall complementarily implement the Jacobi algorithm and the Gauss-

Seidel algorithm, in a sequential way, in order to solve a certain discretized problem. 

By the end of the paper, we shall be able to express which one of these two algorithms is 

most appropriate for the chosen model, i.e., which one of them is most suitable for this purpose. 

PRELIMINARY STATEMENTS 

For calculus’ simplicity, the cubic room will be described in the 3D cartesian coordinate 

system as presented in Figure 1, i.e., centered in the center of it – denoted by O (0, 0, 0) – and 

having [-1, 1] as definition domain for all the coordinate axes. The vertices of the cube will be: 

A (1, 1, 1);  

B (–1, 1, 1);  

C (–1, –1, 1);  

D (1, –1, 1);  

E (1, 1, –1);  

F (–1, 1, –1);  

G (–1, –1, –1);  

H (1, –1, –1). 

238 

https://creativecommons.org/licenses/by/4.0/


 S. Sbîrnă, L.-S. Sbîrnă 

 

 

 Figure 1. Presenting the position of the cubic room within the 3D cartesian coordinate system 

Among the six walls, only one will be set to be cold – having a temperature of 0C, 

whereas the rest of them will be set to have room temperature – more exactly, 20 C.  

A radiator which is capable to emit a 200 C/m2 radiation shall be placed near to the cold 

wall, namely at the location specified by the following function:  

𝑓 = {
200, x1 ≤ x ≤ x2;  y1 ≤ y ≤ y2;  z1 ≤ z ≤ z2

0, otherwise                                                         
                                                                       (1) 

in which: x1 = −1, x2 = −3/8; y1 = −1, y2 = −1/2; z1 = −2/3, z2 = 0, as shown below, in 

Figure 2.  

 

Figure 2. Presenting the position of the radiator inside the cubic room  

within the 3D cartesian coordinate system  

239 



ICAMS 2024 – 10th International Conference on Advanced Materials and Systems 

 

The vertices of the smaller cube (representing the radiator placed inside the cubic room) 

will be, therefore: 

A’ (-3/8, -1/2, 0); 

B’ (–1, -1/2, 0); 

C’ (–1, –1, 0); 

D’ (-3/8, –1, 0); 

E’ (-3/8, -1/2, -2/3); 

F’ (–1, -1/2, -2/3); 

G’ (–1, –1, -2/3); 

H’ (-3/8, –1, -2/3). 

The dissipation of the heat shall be described by selecting grid points inside the cubic 

room and estimating the heat values, by using appropriate differential equations.  

The cube will fit into three different L-type caches, which will be denoted as L, L’ and 

L”. 

SPECIFICATIONS OF THE COMPUTING CLUSTER MACHINE USED FOR STUDY 

As to execute the tests for this study, a computing cluster machine shall be used, whose 

hardware and software specifications are gathered in Table 1:  

Table 1. Hardware and software specifications of the computing cluster machine used for study 

Hardware specifications Sockets 2 

CPUs/socket 12 

No. of CPUs 24 

CPUs Model Intel Xeon Processor E5-2650 

Architecture 64-bit 

Cache L 32 kB 

Cache L’ 256 kB 

Cache L” 61440 kB 

Software specifications Cubic matrix implementation C-native way, indexed with triple pointers 

 Optimization flags -O3 and -unroll-loops 

 C compiler GCC v9.2.0 
 

For both algorithms proposed, it would be interesting to express the maximum size of the 

variable N, denoting the number of grid points chosen inside the cubic room (on each axis),  

In the first case (Jacobi algorithm), we will find, for each L-type cache:  

N = √L/24
3

− 2                                                                                                                                      (2) 

whereas in the second case (Gauss-Seidel algorithm), we will similarly find, in each case:  

N = √L/16
3

− 2                                                                                                                                      (3) 

Using these formulas, we shall calculate and report below – in Table 2 – the maximum 

size of N for each L-type cache.  

Table 2. Maximum size of N for each L-type cache for both Jacobi and Gauss-Seidel algorithms 

 Cache Jacobi algorithm Gauss-Seidel algorithm 

Maximum size of N  L 9 10 

 L’ 20 23 

 L” 134 154 

240 



 S. Sbîrnă, L.-S. Sbîrnă 

 

The limits imposed for the dimensions of the grid placed inside the cubic room shown in 

Figure 1 are established in order to fit this entire room into each of the three caches presented 

before. 

POISSON PARTIAL DIFFERENTIAL EQUATION 

Having the limits calculated and presented before, it will become possible to establish the 

values of N that shall be used for our tests. Namely, the values chosen for N will be equal-to, 

just-above and just-below these limits, noting that all the rest of the values that N will take 

through the test will be in-between the limits, as to permit us to determine the behavior of both 

algorithms, as long as the size of the data will be kept within the above specified L-type cache 

sizes – as stated by Borawake and Hiwarekar (2024), as well as by Goona et al. (2021). 

In computational fluid dynamics, Poisson partial differential equation is appropriate to 

describe the distribution of temperature within a particular space, such as our cubic room.  

So, the main problem will be to estimate steady-state distribution of temperatures within 

the cubic room presented in Figure 1, taking into account the influence of the radiator placed 

inside it, as shown in Figure 2. 

As it is well known, the equation governing this kind of diffusion process is the Poisson 

partial differential equation, whose general form is: 

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
=  −𝑓(x, y, z),   x1 ≤ x ≤ x2;  y1 ≤ y ≤ y2;  z1 ≤ z ≤ z2                          (4) 

in which Φ =  Φ(x, y, z) represents the temperature that diffuses in space and 𝑓(x, y, z) is the 

function already specified in Equation 1 (having there given also the limits of the intervals for 

x, y, z) – as shown by Amjad and Abdullah (2021), Mohanty and Niranjan (2024), Yu et al. (2024). 

BEHAVIOR OF JACOBI ALGORITHM 

Presenting Jacobi Algorithm 

The Jacobi algorithm uses the grid structure of the cub so as the values of 𝑓 and Φ will 

be stored in 3D arrays, and the values corresponding to the inner grid of Φ will be initialized to 

arbitrary values, as presented by Khrapov and Volkov (2024). 

Afterwards, a duplicate of Φ shall be introduced, denoted as  Φ_𝑜𝑙𝑑, which will be 

initialized as identical with Φ. Having both versions of Φ, the Jacobi algorithm will alternately 

compute the values within the grid until reaching the convergence. The number of cubic data 

arrays which represent (in the present case) Φ =  Φ(x, y, z) is two. Consequently, the Jacobi 

algorithm will iterate over one set of computations, alternating between the two versions of Φ, 

allowing the algorithm to permanently keep track of latest data, which will be furthermore 

computed upon, but also stored in a second array, so latest data can never be overwritten until 

completely used. 

For the Jacobi algorithm, there will be triple nested loop iterations, i.e., loop iterations 

through all dimensions corresponding to the cubic arrays (excluding the cube boundary). 

During each iteration, the new values of Φ will be computed using the equation bellow: 

Φ𝑖,𝑗,𝑘
𝑛+1 =

1

6
(Φ_𝑜𝑙𝑑𝑖−1,𝑗,𝑘

(𝑛)
+ Φ_𝑜𝑙𝑑𝑖+1,𝑗,𝑘

(𝑛)
+ Φ_𝑜𝑙𝑑𝑖,𝑗−1,𝑘

(𝑛)
+ Φ_𝑜𝑙𝑑𝑖,𝑗+1,𝑘

(𝑛)
+ Φ_𝑜𝑙𝑑𝑖,𝑗,𝑘−1

(𝑛)

+ Φ_𝑜𝑙𝑑𝑖,𝑗,𝑘+1
(𝑛)

+ ∆2𝑓𝑖,𝑗,𝑘)                                                                                          (5) 

241 



ICAMS 2024 – 10th International Conference on Advanced Materials and Systems 

 

where the ∆ symbol appearing in the equation above stands for the distance between the grid 

points placed in the same dimension. 

Indexing will be made in the order: 𝑖 → 𝑗 → 𝑘, i.e., the outer-most loop will be run 

through depth, the middle one – through rows and the inner-most one – through columns. 

The algorithm will be ended when the difference between the values obtained for two Φ 

grids during two consecutive iterations will become so small as to conclude convergence. In 

other words, the difference between Φ and Φ_𝑜𝑙𝑑 (when compared to a specified threshold) 

should become insignificant for the algorithm to end. 

Implementing Jacobi Algorithm 

Implementing Jacobi algorithm will be carried out using a single thread only (procedure 

usually called “sequential way of implementation”), following the theoretical algorithm. 

The first three arguments will be the cubic arrays of 𝑓, Φ and Φ_𝑜𝑙𝑑 . The constant N will 

represent the total number of grid points inside the cube – in all dimension – for each of the 

cubic data arrays, whereas the final argument will be the tolerance against which the difference 

between iteration will be taken into comparison. We shall also take into account the maximum 

number of iterations performed before ending the algorithm (i.e., until reaching the 

convergence). 

BEHAVIOR OF GAUSS-SEIDEL ALGORITHM 

Presenting Gauss-Seidel Algorithm 

The Gauss-Seidel algorithm is able to approximate the solution of the Poisson differential 

equation by using the same 3D grid as Jacobi algorithm, as shown by Khrapov and Volkov (2024).  

Generally, the difference between these algorithms consists in the number of cubic data 

arrays which represent (in the present case) Φ =  Φ(x, y, z) – temperature that diffuses in space.  

As far as the Gauss-Seidel algorithm is concerned, the number of cubic data arrays which 

represent Φ =  Φ(x, y, z) is reduced to just one (comparatively to two, as already stated for the 

Jacobi algorithm).  

The values for the grid corresponding to the observation of Φ are again initialized by 

making an arbitrary guess. Consequently, during each iteration, the new values of Φ will be 

computed using the equation bellow: 

Φ𝑖,𝑗,𝑘
𝑛+1 =

1

6
(Φ𝑖−1,𝑗,𝑘

(𝑛)
+ Φ𝑖+1,𝑗,𝑘

(𝑛)
+ Φ𝑖,𝑗−1,𝑘

(𝑛)
+ Φ𝑖,𝑗+1,𝑘

(𝑛)
+ Φ𝑖,𝑗,𝑘−1

(𝑛)
+ Φ𝑖,𝑗,𝑘+1

(𝑛)
+ ∆2𝑓𝑖,𝑗,𝑘)           (6) 

where the ∆ symbol appearing in the equation above stands again for the distance between the 

grid points placed in the same dimension. 

Equation (6) shows that this method of computing new values of Φ implies that, for a 

certain iteration, the computed values will depend on some other values, previously calculated 

during the same iteration.  

Implementing Gauss-Seidel Algorithm 

The core of the Gauss-Seidel algorithm is mostly equivalent to the one of the Jacobi 

algorithm, the main difference being the absence of the duplicate of Φ, which used to be called 
Φ_𝑜𝑙𝑑, so the update calculations shall be directly performed upon the cubic data array Φ.  

Compared to the other algorithm, this one does not show any reference to the previous 

values, at different grid points, so a temporary variable must be used in order to store any new 

242 



 S. Sbîrnă, L.-S. Sbîrnă 

 

value. Afterwards, a computation of the squared difference between the two values shall be 

performed, so that eventually the old one can be replaced by the new one in the cubic data array. 

After each iteration, the updated value of Φ must be compared to the grid matrix 

previously obtained, permanently checking if convergence is achieved, in order to stop the 

algorithm. 

The implementation of Gauss-Seidel algorithm within our study will also be a sequential 

one, as in the former case.    

JACOBI ALGORITHM VERSUS GAUSS-SEIDEL ALGORITHM 

The performance of an algorithm is relied both on the hardware it runs on, as well as the 

way it is implemented and executed with respect to said hardware.  

In order to ultimately compare the performances of the two algorithms submitted to our 

study, we shall express a formula giving the lattice updates per second, which can be denoted 

as L(N). 

L(N) =
I ∙ N3

t
                                                                                                                                           (7) 

where I stands for the number of iterations performed until achieving convergence, N is – as 

usually – the number of points inside the grid (considered in all dimensions), whereas t is the 

total wall-clock time of the algorithm. 

We shall also calculate – in both cases – the parameter named floating-point operations 

per second (denoted as flop/s), which represents a measure of computer performance while 

developing each of the two algorithms. In order to find the expression of flop/s, the number of 

lattice updates per second – L(N) – needs to be multiplied with F, that represents the floating-

point operations number in the loop that runs through columns in each algorithm.  

flop/s = L(N) ∙ F                                                                                                                                    (8) 

Hence, combining the last two equations, we get the expression for flop/s, which will be 

considered as the main performance indicator for both algorithms: 

flop/s =
I ∙ N3 ∙ F

t
                                                                                                                                   (9) 

 

What we can ascertain is that there is a significant performance difference between the 

two algorithms, in the sense that Jacobi algorithm performance varies proportional to the value 

of N, whereas Gauss-Seidel algorithm maintains constant performance, not being able to 

increase more than around one hundred updates of the lattice per second.  

CONCLUSION 

By making a comparison between Jacobi algorithm and Gauss-Seidel algorithm (using 

their sequential implementations), we can observe that, focusing on the lattice updates realized 

per second for different values of the number of points inside the grid, for the same size of the 

problem, Jacobi algorithm requires a greater number of iterations for the convergence to be 

achieved than Gauss-Seidel algorithm, but this observation should not automatically lead to the 

conclusion that the second algorithm performs stronger than the first.  

Indeed, assuming that both algorithms submitted to comparison are to be executed for an 

entire set of values given to the number of points inside the cubic grid, maintaining this as the 

only changeable parameter (the maximum allowed number of iterations, as well as the tolerance 

243 



ICAMS 2024 – 10th International Conference on Advanced Materials and Systems 

 

threshold remaining static during the test), the performance will be mainly expressed by the 

number of updates of the lattice per second. 

In these terms, as previously stated, Jacobi algorithm prevails over Gauss-Seidel algorithm. 

It is worth noticing that, in the textile and leather industry, efficient algorithmic 

performance is critical for processing large datasets involved in quality assessment, pattern 

recognition, and defect detection. Parallelizing algorithms like Jacobi and Gauss-Seidel in 

solving Poisson partial differential equations can optimize these processes by reducing 

computational time for simulations and data analysis. For instance, Jacobi's algorithm, with its 

favorable scalability in parallelization, can be applied in modeling heat distribution in fabric 

treatments or predicting wear in leather surfaces. Meanwhile, even though the Gauss-Seidel 

algorithm may not parallelize as efficiently, its sequential strength makes it valuable for smaller, 

detailed simulations, such as stitching pattern assessments or localized stress testing in textiles. 

By improving algorithm performance in these areas, this research supports faster and more 

reliable quality control in textile and leather production, ultimately enhancing product 

durability and efficiency of production. 

REFERENCES 

Amjad, A. & Abdullah, A.A. (2021). The Solution of Poisson Partial Differential Equations via Double Laplace 

Transform Method. Partial Differential Equations in Applied Mathematics, 4, 100058, 1–4. 

https://doi.org/10.1016/j.padiff.2021.100058 

Borawake, V. & Hiwarekar, A. (2024). Modified Double Laplace Transform of Partial Derivatives and Its 

Applications. Gulf Journal of Mathematics, 16(2), 353-363. https://doi.org/10.56947/gjom.v16i2.1892 

Goona, N.K., Parne, S.R. & Sashidhar, S. (2021). Distributed Source Scheme to Solve the Classical Form of 

Poisson Equation Using 3-D Finite-Difference Method for Improved Accuracy and Unrestricted Source 

Position. Mathematics and Computers in Simulation, 190, 965-975. 

https://doi.org/10.1016/j.matcom.2021.06.025 

Khrapov, P.V. & Volkov N.S. (2024). Comparative Analysis of Jacobi and Gauss-Seidel Iterative Methods. 

International Journal of Open Information Technologies, 12(2), 23-34. 

https://doi.org/10.48550/arXiv.2307.09809 

Mohanty, R.K. & Niranjan, V. (2024). A Class of New Implicit Compact Sixth-Order Approximations for Poisson 

Equations and the Estimates of Normal Derivatives in Multi-Dimensions. Results in Applied Mathematics, 22, 

100454, 1–21. https://doi.org/10.1016/j.rinam.2024.100454 

Yu, Z., Wu, L., Zhou, Z. & Zhao, S. (2024). A Differential Monte Carlo Solver for the Poisson Equation. ACM 

SIGGRAPH 2024 Conference Papers, no. 11, 1–10. https://doi.org/10.1145/3641519.3657460 

244 

https://doi.org/10.1016/j.padiff.2021.100058
https://doi.org/10.56947/gjom.v16i2.1892
https://doi.org/10.1016/j.matcom.2021.06.025
https://doi.org/10.48550/arXiv.2307.09809
https://doi.org/10.1016/j.rinam.2024.100454
https://doi.org/10.1145/3641519.3657460

