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The current paper aims to present several mathematical simulation results which have been obtained by 

modeling a Lévy stochastic process, exhibiting two continuous variations followed by a discrete one. In 

modeling such a process, we surely had to decompose it into three sub-processes: the first one is a 

deterministic linear drift (a time-depending simple linear function); the second one is a standard (one-

dimensional) Wiener process (a stochastic process respecting three essential properties, namely: 

independence, stationarity and continuity); the third one is a CFD Poisson stochastic process, which is 

discrete (as formerly stated). The comparison was made by analyzing different sets of histograms. These 

sets have been plotted by histogramically comparing two jump distributions, namely Pareto distribution 

vs. normal distribution. The analyzed Lévy stochastic process, exhibiting both continuous and discrete 

variations, has been computed upon its discrete part, by using an appropriate skeleton structure, the main 

advantage of such a computation being the efficiency of it, although it is known that a weakness in using 

“discrete skeletons” is that the location of large jumps in the simulation model cannot be precisely identified. 
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INTRODUCTION 

Lately, “Lévy processes” turn out into an interesting topic in several areas, among which: 
finances, economics, statistics, mathematics, physics or engineering. 

Indeed, Lévy processes are often used by financial traders so as to conclusively describe 
the volatility of the market in the real-world, but also in order to develop risk-free theoretical 
scenarios. They are used in economics, for developing continuous time-series models. Also, 
they can be used in life-table statistics and actuarial mathematics for computing various risk 
parameters in insurance/reinsurance, as well as by physicists and engineers, e.g., in assessing 
parameters to characterize different kinds of turbulence. 

Lévy processes’ importance was also recently demonstrated in some new fields, such as 
mathematical finance – as by Eberlein (2020) – that they are able to properly approximate various 
observations in financial market, regarding jumps or spikes of the prices, their accuracy 
exceeding the one of the pure Wiener processes, as shown by Barndorff-Nielsen et al. (2001). 

In the textile and leather industry, understanding stochastic processes with both 
continuous and discrete variations is crucial for optimizing production processes, quality 
control, and predictive maintenance.  

For example, in dyeing and finishing, where chemical reactions and color variations are 
influenced by time-dependent factors, a Lévy process model can help predict and manage these 
variabilities, reducing waste and improving consistency.  

Additionally, in leather treatment and textile wear testing, stochastic modeling can 
simulate and anticipate wear patterns or defects, enhancing the ability to preemptively address 
quality issues and extend the lifespan of materials.  

Through simulations based on accurate stochastic processes, companies can make more 
informed decisions and improve resource efficiency.  
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CHOSING THE LÉVY PROCESS FOR THE STUDY 

As it is well known, the term of “Lévy process” generically refers to a motion of a point 
that has random successive independent displacements remaining identical across the time. 

The first part of the Lévy process that we have chosen for this work is the simplest 
deterministic process, named “linear drift”, which will be denoted in our paper as “μt”. 

The second part of our Lévy process is the Wiener process, which will be denoted as 
“σBt”, where B stands for “Brownian”, because the Wiener process is often called “Brownian 
motion”.  

The third (and final) part of the chosen Lévy process is a Poisson process compound upon 
Nt random variables: k = X1, X2, … , XNt.  

As always, a sum of Lévy processes is also a Lévy process, we obtain the following 
compound Lévy process (consisting in two continuous variations followed by a discrete one): 

Yt =  μt + σBt +∑Xk

Nt

k=1

                                                                                                                        (1) 

Discrete simulation is important in studying the properties of our compound Lévy 

processes, as the Wiener process continuously generates random movements occurring between 

its jumps.  

Consequently, we intend to simulate the discrete parts of the compound process by using 

a “discrete skeleton”, {(Pk, Ak, Mk)}, which corresponds to variables called: “prior”, “after” and 

“maximum”, these variables being related to valuable information about the process (before 

and after a random jump, as well as for the maximum value of Yt by the time of its kth jump). 

INTRODUCING THE SIMULATION MODEL 

As previously discussed, the simulation model will be not continuous, but discrete, as 

the values of the Lévy process are collected in a “discrete skeleton”, {(Pk, Ak, Mk)}. 
Considering the expression (1) and assuming discrete time – following Applebaum 

(2004): 

T ~ exp(λ)                                                                                                                                              (2)         

one can further define: 

V = max
0≤t≤T

μt + σBt                                                                                                                                  (3) 
 

and 
 

W = (max
0≤t≤T

μt + σBt) − (μT +  σBt)                                                                                                (4) 
 

The discrete simulation can be performed according to an appropriate algorithm, that will 

be described in what follows. 

ALGORITHM PROPOSED TO SIMULATE THE CHOSEN LÉVY PROCESS 
  

The algorithm will be proposed according to the previously presented purpose. 
 

Algorithm: Simulation of the Lévy process, assuming discrete time 
 

Set P0, A0, M0 = 0, 0, 0 
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 for iteration, k = 1, 2, . . . , n do 

 

  Simulate Vk,Wk, Xk 

 

  Set: 

 

   Pk = Ak−1 + (Vk −Wk) 
 

   Ak = Ak−1 + (Vk −Wk) + Xk 
 

Mk = max{Mk−1, Ak−1 + Vk, Ak−1 + (Vk −Wk) + Xk} 
 

end for 
 

 

 

The code implementation in the algorithm above is written using the R programming 

language.  

In the settings of this simulation, Xk are independent and identically distributed (i.i.d). 

random variables having the distribution F, which are defined as the size of the kth  jump, V 

and W are two normally distributed independent random variables, whose intensities are: 

ϕ1 = √
μ2

σ4
+
2λ

σ2
 −

μ

σ2
                                                                                                                            (5) 

and 

ϕ2 = √
μ2

σ4
+
2λ

σ2
+
μ

σ2
                                                                                                                           (5′) 

 

respectively. 

The function to be implemented has the following arguments: n (total number of 

iterations), μ, σ, λ (parameters from which it becomes possible to compute the intensities given 

above (ϕ1 and ϕ2), a (threshold to be discussed in estimating first-passage probabilities), X 

(argument that selects which is the type of distribution for the jump components), and 

“jump_size” (mean of the distribution).  

There are three types of return values for this function: “final” – for the values of the 

“skeleton” at the iteration n, so {(Pn, An, Mn)}; “path” – for the values of the “skeleton” at each 

iteration, k and “first passage” – for a true/false value which depends on exceeding or not the 

value of constant a (introduced above). 

As far as simulation of jumps while keeping fixed parameters, a set of 800 simulation 

runs will be performed, so as to later prove the variability of a simulation upon twenty 

simulation runs (keeping the same parameters).  

First simulation is run for fixed parameters μ, σ, λ and assuming all the values for 

jump_size to be equal to the unity and F is chosen as a normal distribution.  

LÉVY PROCESS’ EVOLUTION  

The values of A and M are approximately identical; the support of the normal distribution 

belongs to the interval [0,∞), so values of jump_size are either null or strictly positive, whereas 

Ak ≥ Pk.  
 

There cannot be identified any predominant components in terms of absolute values, so 
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the studied process should mostly be characterized by the positive linear drift and the values 

of jump_size. From the set of 800 simulation runs, the difference between the simulations runs 

seems to be more noticeable within the interval [480, 500]. 

LÉVY PROCESS’ DECOMPOSITION AND COMBINING THE DISCRETE PARTS 

As stated before, the composed Lévy process can be decomposed into three sub-

processes, the first one being a deterministic linear drift (μt) – which is continuous, the second 

one being a stochastic Wiener process (σBt) – which is also continuous and the third one being 

a stochastic Poisson process (∑ Xk
Nt
k=1 ), – which is discrete, as presented by Costa (2023).  

As far as the first part is concerned, as the name itself suggests, the linear drift is a simple 

linear function of the time, with coefficient 𝜇 ∈ ℝ. 
As far as the second part is concerned, t is well known that a stochastic process W(t) is 

called Wiener process if it respects the following three properties: independence, i.e., 

[W(t + ∆t) −W(t)] does not dependent on W(τ) for any τ ≤ t; stationarity, i.e., the distribution 

of [W(t + ∆t) −W(t)] does not depend on t and continuity, i.e.: 

log∆t→0
P(|W(t+∆t)−W(t)|≥δ)

∆t
= 0                                                                                                             (6)  

for δ > 0, as proved by Kim and Park (2024). 

As far as the third part is concerned, the Poisson process Nt – with its intensity λ ≥ 0 – 

can be used to define processes having non-continuous increments, in terms of the number of 

events in non-overlapping intervals: 

P(N(t) = N) =
(λt)n

n!
e−λt                                                                                                                     (7) 

this process occurring at arrival times S1,  S2, … , Sn and interarrival times T1,  T2, … , Tn, where 

the connection between arrival and interarrival times is that S is the sum of T, i.e: 

Sn = ∑Tk

n

k=1

                                                                                                                                             (8) 

In order to avoid an inefficient simulation of the Wiener process, the composed Lévy 

process would be better described with the two discrete parts (linear drift and Wiener process) 

combined together.  

They could be looked at as one discrete function, which would be defined as [Vk −Wk], 
describing the movement of Yt between jumps Xk and Xk−1 – i.e., between Tk and Tk−1. 

At one side, as between consecutive jumps the combined component {μt +  σBt}t≥0 

follows a volatile pathway as a consequence of the stochasticity of Bt component, the maximum 

value of the combined component within the interval [Tk − Tk−1] will be denoted as Vk: 

Vk = max(μt + σBt) ,           t ≥ 0                                                                                                        (9) 

Vk being the value of the combined component {μt +  σBt}t≥0  exactly at the moment tmax (with 

0 = Tk−1 ≤ tmax ≤ Tk) in which Vk reached its maximum value within the interval – n.b. that, 

for every interval, t is set to be null.  

On the other side, Wk is defined as: 

Wk = max(μt + σBt) − (μT + σBT),     t ≥ 0                                                                               (10) 

Consequently, the change of Yt within the time interval [Tk − Tk−1], which might be 

attributed to the continuous part of the compound process, is equal to Vk −Wk, which means: 
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μT + σBT = Vk −Wk                                                                                                                          (11) 

INTERPRETING THE “DISCRETE SKELETON” 

Within the “discrete skeleton”, {(Pk, Ak, Mk)}, the value Pk (prior to the next jump Xk) is 

obtained by adding to the value Ak−1 (after the last jump, Xk−1) the change caused by the 

continuous process between jump Xk and Xk−1 (represented as the difference between the 

values Vk and Wk): 
Pk     = Ak−1⏟

Yt after Xi−1

   +   (Vk −Wk)⏟      
linear+Wiener

 = Ak−1 + Vk −Wk                                                           (12) 

The value Ak, obtained after Xk, is equal to the sum between the value Pk, registered 

before the jump, and the size of the jump, Xk: 

Ak = Pk + Xk = Ak−1 + (Vk −Wk) + Xk = Ak−1 + Vk −Wk + Xk                                        (13) 

 The value Mk is the maximum value taken by Yt during the kth jump, meaning that it is 

equal to the maximum value of all points in the interval [0, Sk] registered within the respective 

time period. 

Mk = max(Mk−1, Ak−1 + Vk, Ak−1 + Vk −Wk + Xk)                                                                (14) 

TESTING PARETO DISTRIBUTION VS. NORMAL DISTRIBUTION 

First-passage probability is defined for a fixed value, a ≥ 0; in this case, it is the 

probability that the compound Lévy process ever exceeds a; as to estimate this probability, we 

shall compare the value a to the maximum value of this process – i.e., to the M coordinate of 

the “discrete skeleton” {(Pk, Ak, Mk)} k∈ℕ, so if Mk does not reach level a (whatever value it 

can take), we can conclude that the path cannot ever go beyond a – as remarked by Kındap and 

Godsill (2024). 

The compound Lévy process was tested for two distributions of the values of  jump_size 
Yk, in each case the mean jump_size being equal to the unit. Six histograms were drawn. 

Namely, we histogramically have compared – by recording the values found in each small 

interval – the first-passage probabilities for a Pareto distribution (with a shape parameter equal 

to 1.04) to a normal distribution (with a standard deviation equal to 10) – n.b., the normal 

distribution is the case in which the Wiener process is neither negatively-oriented nor dominant. 

We used these two distributions to generate different values of jump_size of the Poisson 

process, in order for them to serve as input data in the simulation of the Lévy process.  

We shall show here, in Figures 1-3, the resulting first-passage probability for each 

member of the “discrete skeleton” {(Pk, Ak, Mk)} k∈ℕ, by means of three sets of histograms, 

recorded from a hundred values of {(P800, A800, M800)}, corresponding to a Pareto and, 

respectively, to a normal distribution, in each figure being involved just one member of the 

“discrete skeleton”. 

For simplicity, in both cases, we have kept the same value for the parameters {μ, σ, λ}, all 

of them having the same value, μ = σ = λ = 1.  
It was easily proved that the Pareto distribution exhibits a smaller variance, whereas only 

the normal distribution can take negative values, meaning that in this case the Lévy process can 

have both positive or negative jumps, i.e., just for the normal distribution, we could sometimes 

find cases in which Ak < Ak−1. Moreover, the values of A can be significantly different from 

the ones of M only in the normal distribution (and this happens, again, because this is the only 

one in which the jumps can be negative). 
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One may also observe that, whereas all the three Pareto distribution histograms are quite 

asymmetric (appearing in the range [1100, 1540] and having the majority of the values in the 

range [1210, 1430] and a strong peak between 1210 and 1320, the results are more evenly 

distributed for the normal distribution histograms: they appear in the range [1200, 2860] for P 

and A and [1310, 2860] for M, being mainly represented in the range [1450, 2440]. 

The histograms previously presented are considered to be representative, because no 

other component of the Lévy process is dominant, so they have proved that variance 

differences are remarkable from the histograms themselves, consequently limiting all the 

discussion only to a single run of simulations. 

 

Figure 1. Histograms recorded for P from a hundred values of {(P800, A800, M800)}:  
Pareto distribution (left) vs. normal distribution (right), with all parameters presented above 
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Figure 2. Histograms recorded for A from a hundred values of {(P800, A800, M800)}:  
Pareto distribution (left) vs. normal distribution (right), with all parameters presented above 

 

 

Figure 3. Histograms recorded for M from a hundred values of {(P800, A800, M800)}:  
Pareto distribution (left) vs. normal distribution (right), with all parameters presented above 

CONCLUSION 

Within this work, taking into account how difficult it can sometimes be to simulate the 

236 



 S. Sbîrnă, L.-S. Sbîrnă 

 

continuous Wiener process, a compound Lévy process was computed upon its discrete parts, 

by using an efficient “discrete skeleton” structure.  

The main benefit of this procedure is the computation efficiency, although a drawback 

of using “discrete skeletons” consists in the fact that the location of large jumps cannot be 

identified with precision within this mathematical simulation. 

We have demonstrated that the Wiener process component inside the composed Lévy 

process is the one responsible for determining the variance of Yt.  
The values taken by the first-passage probability during the Lévy process were collected 

in a “discrete skeleton”, {(Pk, Ak, Mk)}. 
These correspond to three variables meaning – as previously mentioned: “prior”, “after” 

and “maximum” (all of them giving useful information regarding the process at different times, 

either before or after a random jump of the process). 

When experimenting with two different distributions of the i.i.d. variables Xk (1 ≤ Xk ≤ 
Nt) which can characterize the stochastic Lévy process, namely Pareto vs. normal distribution, 

we have observed some interesting aspects about the values that can be taken by the jumps in 

each case.  

Finally, by analyzing any potential differences that could occur in variance given by 

these two statistical distributions, we have found that the presented histograms are 

representative for any of the three members of the “discrete skeleton”, {(Pk, Ak, Mk)}, as no 

other component of the process is dominant, leading to the conclusion that variance differences 

are noticeable from the graphs themselves, so the discussion can be successfully restricted to 

a single simulation run.  
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