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Finding successful ways to reduce the energy utilization in commercial and  residential buildings
is of paramount importance in lowering CO2 emissions and achieving the Kyoto Protocol
commitments on climate change. Indoors energy consumption account for roughly 40% in US and
EU. Building exploitation are linked to about 36% of the total CO2 footprint. The main approach
to ameliorate this situation is to enhanced energy efficiency, decrease the overall consumption and
switch to renewable, carbon-free energy sources. In the field of energy efficiency, enhancement of
load control and adaptive demand response at every point of consumption are part of the solution.
This paper presents the problematic and limits of energy consumption savings while
accommodating human comfort propensity. Further we present the simulation results for a grid of
independent, autonomous, collaborative agents that continuously monitor human activity in a
closed environment and override the user configured comfort preferences towards a default
optimum performance/cost whenever the changes do not affect the user experience. In order to
better highlight the importance of local micromanagement and to obtain the best approximated
average performance, the chosen simulation environment was a  250 rooms hotelier resort and
targeted the heating/cooling annual energy cost with human behavior stochastic considerations.
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INTRODUCTION

A building’s energy consumption depends on numerous factors like structure,
insulation, climate, in-terrain positioning, residents, usage patterns, HVAC (heating,
ventilation and air conditioning) performance, etc. These factors can be treated as
systemic features or exploitation events.

Simulating a building's usage history over a significant period can test usage
strategies and indicate improvement options. Real-time monitoring in large buildings is
expensive, the case-study timeframe cannot be compressed and the events cannot be
exactly rerun. The study results are strongly linked to the observed building and the
improvement recommendations cannot be ported elsewhere. Modeling and simulating
user activities in virtual environments is cost effective, fast, flexible and permits use-
case scenarios testing for better systemic, organizational and procedural design
(Fujimoto, 2001).

Multi-agent systems (MAS) architectures avoid the "single point of failure"
structural vulnerability encountered in SCADA design, provide support for
interconnectivity and interoperability of legacy systems in heterogeneous assemblies
and mitigate network service interruption. MAS characteristics determine an inherent
better reliability, robustness, extensibility, maintainability, responsiveness and
flexibility of the developed solution.

The agents can either be explicitly organized in particular task groups or configured
to auto-organize and cooperate towards a preconfigured set of goals (Vasyutynskyy et
al., 2007; Rutishauser, 2002). The tasks can be related to Smart Grid operations and
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optimization, energy consumption with HVAC and lighting, user comfort, security and
disaster management, etc.

While from a theoretical point of view the space positioning of some system
elements (sensors/actuators) do not deny the conceptual systemic unity and the agent as
set of roles distributed across multiple nodes is admissible (Ruairí & Keane, 2007), we
consider an agent to be a dynamically configurable, compact unit capable of
autonomous and collaborative behavior.

Energy efficiency strategies implemented at building level are impaired by
individual originated demands and preferences. While most approaches treat the
building's HVAC demand as a whole and propose strategies at building level, the
objective of this paper is to demonstrate the importance of micromanagement at user
and individual action level. Further, we prove the existence of an important savings
margin by overriding a user's preferences whenever his comfort or experiences are not
affected.

THEORETICAL BACKGROUND

The overall heat loss aggregates surface losses by conduction and radiation through
windows, wall, doors etc., by ventilation and by infiltration. The superficial heat loss
varies linear with and determines a constant cost per time unit to maintain a desired
interior temperature for a given outside condition, with U = overall heat loss coefficient
and = outside/inside temperature difference:

Heat loss (W) = A ( ) * U( ) * (K) (1)

In order to estimate the annual energy cost with space heating or cooling we used the
degree-days approach (Martinaitis et al., 2010; Bhatia, 2013). This method was first
developed in agricultural research and was used to observe the effect of atmospheric
temperature dynamics on crops. The concept was imported into building energy
consumption analysis as a link between weather changes and energy consumption and it
allows to review a building’s current energy requirements vs. its past performance.

Heating or cooling degree-days are computed as a daily exterior-interior temperature
difference, the interior temperature being considered a reference temperature, usually
65ºF 18 . The method assumes that any outside temperature below the reference
temperature will trigger indoor heating in various degrees. An analogue approach
anticipates the cooling demand.

for (2)

Some models considered an hourly basis in sampling, averaging the sum of positive
hourly differences, introduced as cooling degree hours (CDH) (Krese et al., 2012). If
detailed weather dynamics information is not provided, estimative calculation methods
for degree-days have been proposed (Hitchin, 1984; Spano et al., 2002). While the
HDH/ CDH method produce better results than HDD/CDD, its predictive usefulness in
real human activity scenarios is still reduced because one-hour sampling intervals
cannot accurately support human activity modeling.



ICAMS 2014 – 5th International Conference on Advanced Materials and Systems

Both degree-days and degree hours formulas use one single indoor temperature
reference although the human comfort zone is a variable interval that depends on
climate, age, gender, culture, habits etc. We consider more accurate to use two indoor
temperature references, a lower "need heating" reference and a higher "need cooling"
one. Further, we used weather data for every minute in order to summate and compare
temperature differences over an entire year in two different usage scenarios: with and
without multi-agents HVAC micromanagement. Given the above considerations of
heating/cooling cost being linear with , the less cumulative temperature differences
have to be sustained over a year, the lesser energy will be required, being expected thus
a lower exploitation cost.

SCENARIO SETUP

We considered an administrative task group of collaborative agents for each closed
space that could have an independent HVAC configuration inside a building. The
purpose of each task group was to reduce HVAC energy consumption whenever
possible, within a series of constraints. Such HVAC independent spaces can include one
or more linked rooms and have the capability to insulate the inside temperature from the
rest of the building. We will name in the following such organizational space units
“apartments”, regardless of their private, public, commercial or corporate destination.

The considered constraints were:
• Prior to use an apartment, a user must announce in advance with at least

one hour and book the apartment for a determined period of time.
• A free (non-booked) apartment will function in “stand-by mode”,

maintaining a cold (Standby-Chill) or hot (Standby-Hot) temperature
until booked.

• By default, the apartment is set to function in optimum comfort
temperature mode, if the user does not activate personal preferences.

• The agents override the user’s preferences and fallback to the default
regime whenever the user’s experience is not affected (user is away or
sleeps). The user’s preferences are reinstated immediately after the
overriding condition cease to exist.

SIMULATION FRAMEWORK

For commercial buildings, ISO standard 7730 prescribes generic temperatures of 20-
24°C in winter and 23-26°C in summer, with exceptions according to room destination.
According to World Health Organization (WHO), a temperature of 21°C in the living
room and 18°C in other occupied rooms represent “an adequate standard of warmth". In
practice, the base temperature is recommendable to be established from case to case
(Day et al., 2003).

The presented agent model and scenario constraints were implemented using the
SHIELD simulation framework. The framework is oriented to emulate complex
collaborative interactions of heterogeneous agents in Intelligent Buildings (Neagoe,
2014).

Our simulation took the standard reference temperature as 18 , the optimum
heating comfort 21°C, optimum cooling comfort 22°C. These values were considered
conservatively and prudent, to avoid exaggerating the comfort interval and force better
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results. The Standby Chill and Standby Hot temperatures were set at 16°C and
respectively 26°C. The simulation considered real weather temperatures recorded in
2013. Processing the injected Max/Min monthly values series, the simulation generates
a plausible atmospheric variation (continuous weather scenario) for 525600 minutes
(one year) or loads a previous generated pattern.

Figure 2. Real weather pattern for Brasov, Romania, 2013

The simulated environment emulated a hotel with 250 apartments with HVAC
features managed for each apartment by a group of collaborative agents. The generated
weather continuity chart highlights that buildings in Brasov deal mostly with heating
demand (reality), cooling being a non-issue:

Figure 3. Annual heating and cooling demand, Brasov, Romania, 2013

Since most energy consumption occurs in the cold days with heating, the hotel
scenario considered a plausible facility load history, giving a special attention to the
possibility that unrealistic usage patterns injected as scenario input could artificially
alter the result. The considered occupancy pattern as a (days in month, occupancy
percent) series:

Monthly Facility Load = { IAN { 31, 95 }, FEB { 28, 85 }, MAR { 31, 65 }, APR {
30, 40 }, MAI { 31, 45 }, IUN { 30, 55 }, IUL { 31, 65 }, AUG { 31, 75 }, SEP { 30, 70
}, OCT { 31, 65 }, NOV { 30, 75 }, DEC { 31, 100 } };  // {DAYS IN MONTH,
HOTEL LOADING PERCENTAGE}

The occupancy pattern proved to be of major importance in the simulation outcome.
The differences in the final result ranged from the lowest  energy savings score (6,7%)
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for a constant 100% occupancy to the highest (33, 94) for 0% occupancy. The
interpretation is straightforward, the 0% occupancy  fully "benefiting" from the
Standby-Chill/ Standby-Hot HVAC regime while at 100% occupancy no standby
regime was registered.

Further, for each apartment was generated the daily occupancy history and one of
three user types was assigned to use the space. The three user types were: minimalistic
user (R1), normal user (R2) and intensive user (R3), randomly generated with 20%-
60%-20% probabilities. The R1 type is mostly absent, does not change much or at all
the standard HVAC setup and has no extreme preferences(demands 19-22°C in winter
and 24-27°C in summer), the R2 normal user is moderately absent and has moderate
temperature preferences(21-24°C , 22-25°C ) and R3 intensive user that almost never
leaves the room and has the costliest "demands" (23-26°C, 20-23°C). All user types
"sleep" one single time per 24 hours, at night, for 6 to 10 hours(random).

For each user type, an user event sequence is created for every day he occupies the
apartment. He leaves, returns, configures HVAC preferences or not, sleeps. All events
have a "cool-down time" while they cannot happen again and do not describe
impossible or abnormal user behavior (one cannot be away and asleep at the same time,
will not change HVAC preferences 10 times per hour, etc.). The user actions are not
altered by exterior influences like price incentives or constraints (Mohsenian-Rad et al.,
2010; Ozturk and Kumar, 2013; Ramchurn et al., 2011). To permit an accurate
comparison, the simulation stores the user action sequence for each day, for each
apartment, in order to run the "unmanaged"/"micromanaged" scenarios in a row.

RESULTS

Using the degree method to compute the heating and cooling effort each minute
produces large figures for each day, for the 250 simulated apartments reaching an
order. The following synthetic chart represents the "Classic Heating/Cooling Degrees
Needed" - CHDN/CCDN series, computed using two interior comfort reference
temperatures Comfort Heat Needed = 21 and Comfort Cold Needed = 22 and the
"Micromanaged Heating/Cooling Degrees Comfort" MHDSC/MCDSC series, where
the local agents override user preferences with optimum values while the user is
away/sleeps and fallback to Standby Chill/Hot mode while free of contract:

Figure 4. Comparative unmanaged vs. agent micromanagement HVAC effort

The two compared methods used the same annual weather pattern, occupancy series
and generated user events series for all simulated apartments. Repeated simulation re-
runs with the same input data (monthly min/max temperature series and monthly
occupancy series) constantly produced result between roughly 14% and 15%. The above
simulation run indicated a 14.421 % gain in energy efficiency.
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CONCLUSION

The degree-days (hour/minutes) concept permits the analysis of energy management
outcome regardless of a buildings physical characteristics or HVAC installations
performance. These factors being the same for each case, the outcome difference comes
from usage policy alone. Intelligent agent HVAC real-time micromanagement shows
an important savings margin to a building's energy bill. For the simulated case-study
presented in this paper the performance gain was equivalent with 35 apartments out of
250 running with no HVAC costs for an entire year. The fact that the simulation used
conservative figures indicates a higher performance possible in extreme case scenarios
(ex. natural disaster or  calamity), when the comfort interval could be automatically
adjusted to accommodate the transient conditions. The intelligent micromanagement
technique can be applied to any building, residential or commercial, and can be
improved with further automatic triggered events like automatic windows and reflective
curtains operations, user incentives, humidity control etc.
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