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Composite structures made of fibre reinforced polymer (FRP) composites are usually built-up of
several individual unidirectional laminas which may have their natural material axes at different
orientations with respect to the loading direction. Off-axis mechanical properties of the
unidirectional FRP lamina can be determined either experimentally or predicted theoretically. One
way to theoretically predict the off-axis stiffness and strength properties of a unidirectional
orthotropic lamina is by applying the macromechanical concepts. This paper presents the available
macromechanical approaches utilized to calculate the off-axis stiffness and strength properties of a
unidirectional orthotropic lamina for which the loading directions are different from the principal
material axes. In addition, a case study is presented, in order to apply the macromechanical tools to
a FRP lamina made of glass fibres and epoxy matrix.
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INTRODUCTION

From macromechanical point of view, the off-axis mechanical properties of the
unidirectional FRP composites are anisotropic, due to their variation with respect to the
orientation of the reference plane. The aim of the macromechanical approach is to
correlate the stiffness and strength properties along an arbitrary direction with the basic
properties of the unidirectional FRP composite referred to its principal material
directions (Daniel and Ishai, 2006). FRP composite laminates consist of two or more
laminas, bonded together so that they can act as integral structural elements (Agarwal et
al., 2006). For this reason the understanding of the individual lamina characteristics
should precede the analysis of the laminated structures theory.

Orthotropic Laminas

A lamina or a ply consists of a flat or curved arrangement of unidirectional fibers
embedded in a support matrix and it represents the basic element of a composite
material. For the orthotropic lamina, the material axes are perpendicular and stand as
symmetry planes.

Generally Orthotropic Lamina

The generally orthotropic lamina is that for which the material axes (1, 2) do not
coincide with the global coordinates axes (x,y), that may be the axes of the loading
directions (Barbero, 2011). The material axes are rotated with respect to the reference
system by angle Ɵ, as presented in Figure 1.
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Figure 1. Generally orthotropic lamina

The constitutive equations for the generally orthotropic lamina are presented in
Equations 1 and 2.
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where, { }i and { }i are the components of the stress and strain matrices, respectively.

The matrices
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are the reduced transformed stiffness and compliance

matrices, respectively. The elements
__

ijQ and
__

ijS are functions of the elastic properties of

the lamina along its principle axes (1,2) and of the fibre orientation angle, Ɵ.

Stiffness Properties

Axial Modulus of Elasticity, Ex

Assuming that the only nonzero stress component acting on the lamina is σx, the
axial modulus of elasticity (Ex) can be expressed in terms of the engineering constants
in the principal material coordinates and of the fibre orientation Ɵ.

4 2 2 412

1 12 1 2

1

1 1 1
c 2 s c s

xE

E G E E


=

 
+ − + 

 

(3)

where, E1, E2 and G12 are the axial and shear moduli of elasticity in the principal
material axes, ν12 is the first Poisson’s coefficient and the trigonometric functions sinƟ
and cosƟ are denoted with s and c, respectively.

The variation of the axial modulus of elasticity is presented in Figure 2. It can be
seen that the values of Ex decrease as the angle between the material axes and the global
coordinates axes increases, between E1 and E2.
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Figure 2. Variation of Ex with respect to Ɵ

Axial Modulus of Elasticity, Ey

Imposing that the only stress component different from zero is σy, the axial modulus
of elasticity Ey can be also expressed with respect to the fibre inclination angle Ɵ and to
the elastic properties of the lamina along its principal axis.
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Figure 3 presents the variation of Ey with respect to angle Ɵ. Unlike the case of the
longitudinal modulus of elasticity in x direction, the interval between 0° and 60° is
characterized by a smaller rate of increase while in the 60°-90° interval, Ey has the
highest rate of increase. Appling Equation 4 for Ɵ = 0° and Ɵ = 90°, Ey equals E2 and
E1, respectively.

Figure 3. Variation of Ey with respect to Ɵ
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Shear Modulus of Elasticity, Gxy

The shear modulus of elasticity can be calculated under the assumption of pure shear
state of stress. In this case, the only non-zero stress component is τxy; the shear modulus
of elasticity, Gxy can be also expressed as a function and of the elastic properties of the
lamina in its principal directions and of the fibres inclination angle.
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The variation of the shear modulus of elasticity is presented in Figure 4. It can be
seen that Gxy has the highest values when Ɵ is 45° while Gxy equals G12 when Ɵ is 0° or
90°.

Figure 4. Variation of Gxy with respect to Ɵ

Poisson’s Ratios, νxy, νyx

The first Poisson’s ratio νxy, can be calculated considering that the only nonzero
stress component is σx (Equation 6), while the second Poisson’s ratio νyx, can be
obtained when σy is different from zero, (Herakovich, 1998), (Equation 7).
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Figure 5 presents the variation of νxy and νyx with respect to the inclination angle of
the fibres, Ɵ. The first Poisson’s ratio has the highest values when Ɵ is 29° and equals
ν12 or ν21 when Ɵ is 0° or 90°, respectively. Similarly, the second Poisson’s ratio has the
same values as ν12 or ν21 when the inclination angle of the fibres is 0° or 90° but νyx

reaches its maximum value when Ɵ is 61°.
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Figure 5. Variation of νxy and νyx with respect to Ɵ

Strength Properties

Off-axis Tensile Strength

The maximum tensile strength along any direction can be calculated with Equation 8
which is derived from the Tsai-Hill failure criterion (Kaw, 2005).
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where, fLt and fTt are the longitudinal and transverse tensile strength of the lamina along
its principle directions and fLTs is the in-plane shear strength of the lamina.

CASE STUDY

Determine the mechanical properties in the global coordinates system (x,y) of the
following 45° angle unidirectional E glass / Epoxy composite (Taranu et. al., 2013). The
properties of the lamina along its principal axes are: fLt = 900 MPa, fTt = 19.5 MPa, fLTs

= 25.9 MPa, E1 = 44.30 GPa, E2 = 6.77 GPa, G12 = 2.95 GPa, ν12 = 0.278 and ν21 =
0.053.

Figure 6. 45° angled unidirectional E glass / Epoxy composite lamina
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Because Ɵ = 45° (s = c) it results that Ex = Ey and νxy = νyx.
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CONCLUSION

This paper presents the macromechanical approach that can be applied to determine
the off-axis stiffness and strength properties of FRP composite laminas. These
theoretical methods of predicting the properties of an FRP product subjected to a certain
state of stress having reference directions different from the materials principal ones,
can turn to be effective not only from the economical point of view but also from the
time consuming one.

Experimental determinations for various inclination angles (Ɵ) of the fibers
orientation are prohibitive and difficult to be carried out. Moreover, the off-axis
properties of an FRP composite lamina should be previously determined by theoretical
approaches followed by selective experimental tests aiming to validate these results.

REFERENCES

Agarwal, B.D., Broutman, L.J., Chandrashekhara, K. (2006), Analysis and Performance of Fiber Composites,
3rd Ed., John Wiley & Sons, New Jersey.

Barbero, E.J. (2011), Introduction to Composite Material Design, 2nd Ed., CRC Taylor & Francis, Boca
Raton.

Daniel, I. and Ishai, O. (2006), Engineering Mechanics of Composite Materials, Oxford University Press,
New York.

Herakovich, C.T. (1998), Mechanics of Fibrous Composites, John Wiley & Sons, New York.
Kaw, A. (2005), Mechanics of Composite Materials, 2nd Ed., CRC Taylor & Francis, Boca Raton.
Taranu, N., Bejan, L., Cozmanciuc, R. and Hohan, R. (2013), Composite Materials and Elements I (in

Romanian), Politehnium Press, Iasi.


