NEW WET WHITE TANNING AGENTS AND TECHNOLOGY

MARIAN CRUDU, VIORICA DESELMICU, IOANNIS IOANNIDIS, LUMINITA ALBU, ANDRA CRUDU

INCDTP - Division: Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest, Romania, email: icpi@icpi.ro

Leather industry has to cope nowadays with major environmental problems because of the polluting processes (a World Bank report has placed the leather industry in the ninth place when considering the environmental impact). Therefore, increasing the environmental efficiency in the leather sector is the major aim of leather, auxiliary materials and equipment manufacturers. The development of new tanning agents and new technologies is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. The original contribution of this work in solving the above problems has involved the use of solid titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots) in the preparation of new tanning compounds intended to increase the environmental efficiency of the leather sector.

Keywords: Ti-Al tanning agents, wet white, clean technology

INTRODUCTION

Hitherto, the mineral tanning agents most frequently used throughout the world are salts of chromium (III) (ca. 85% of total world finished leather output), which remain unsurpassed in the qualities offered to leather; these, in turn, include high hydrothermal, thermal and light stability and versatility with regard to the variety of leather articles, which can be made from the intermediate, chromium (III)-tanned leather, «wet-blue» (Covington A.D., 2008).

In general, chromium (III) tanning agents uptake under typical technological conditions is of the order of 60 – 80% of the offered quantities (typical offer: 80-90 kg Cr-tanning salts/t of pelt weight), with 3-7 kg Cr³⁺/t of raw hides /skins (2-7 g Cr(III)/Lt of exhaust tanning liquor) discharged with the process effluent. Even though there is no legislation or norm that requires that chromium (III) should be absent from leathers, maximum allowable concentrations have been stipulated for the total chromium or chromium (III) content in leather digests or extracts, whereas an even stricter concurrent legislative requirement has been imposed for chromium (VI) absence (non detectable) in most finished leathers. In particular, Chromium (VI) and its salts are classified as known carcinogens not used for tanning and normally absent from chromium (III) tanning salts. However, apart from its potential presence in pigments, colouring additives and fixatives, commercial chrome tanned leathers can be tested positive for the presence of chromium (VI) in quantities exceeding the stipulated legal or normative limits. De-facto chromium (VI) does not exist in finished chrome-tanned leather, and apart from the frequently never told truth of test method inefficacy or non-appropriateness, intelligent tentative interpretations of the observed chromium (VI) formation agree that can be the product of oxidative conversion of chromium (III) under specific leather manufacturing or storage conditions e.g. high leather pH or use of specific fat liquoring agents. Along the same lines, several eco-certification schemes stipulate limits in Cr (III) content: (i) in aqueous extracts of leathers and leathers products with water, artificial sweat or in some cases in their digest and (ii) in the effluent after depuration (0.2-3 ppm) that are impossible to match, if leathers continue to be tanned or/and re-tanned with Chromium (III) tanning agents.
These practical and operational constraints have stimulated research efforts to find an alternative to chromium (III) tanning (German H.P., 2010) for the production of Free-of-Chrome (FOC) and in some cases also Metal-Free leathers, whilst retaining the often expected by the consumer mineral character in leather articles, with some profound examples of succeeding in replacing fully chrome-tanning lines in Industrial upper leather production (Carvalhos OAK Leather). Accordingly, Al (III) (Waldo W., 1983; R. A. Hancock, 1980), Zr (III), Ti (III & IV) (Bi Yu Peng, 2007), Fe-salts (Te-Pang Hu, 1921, Kleban, M.), their mixed salts (Covington A.D.), and most recently nano-silicates (Liu, Y. et al, 2010) and sodium water glass (EU-funded 2001-2003) were tested as effective partial or total replacement mineral tanning agents for the production of a reversibly or irreversibly – most recently – tanned new intermediate semi-processed product and commodity: “wet-white” or “wet-stabilised” leather. Overall metal ion complexes have some affinity for protein, however, the mechanism of their binding to collagen – if taking place – is far from being resolved with several hypotheses and models often postulated and used, but seldom proven for this purpose. Moreover, when applying the criteria of adequate reactivity, colour, availability, cost and toxicity, and most recently LCIA, nearly all of the commercially available agents were rendered redundant as viable options. A good example is Aluminum salts that have long been associated with stabilising animal origin pelts and have the advantage of being abundant and cheap. However, Aluminum is only loosely bound and fixed to collagen, so that the reaction is readily reversed, when the leather is wetted and found in acidic environments; for this reason, this process is regarded as a pseudo-tannage and called tawing, rather than tanning. However, as shown by one of the co-authors in earlier studies (Ioannidis, I.A. 1990) the effectiveness of a tanning molecule depends on its ability to provide high molecular weight cross-linked moieties within the collagen molecule and was possible to propose reactive Aluminium tanning agents preparations that match this requirement (Ioannidis, I.A., 1989), which, on the other hand, were never taken up by the Industry, due to emerging renewed toxicity considerations, but primarily as a result of the undoubtedly superior versatility, cost effectiveness and reliability of Cr (III)-tanning systems.

Within this framework of industrial needs high levels of excess Cr(III)-tanning products remain a potential threat and hazard to the environment or contribute significantly to the amount of recalcitrant pollutants. Consequently, there is mounting pressure on tanners to reduce levels of Cr(III)-tanning agents employed during leather manufacture and their discharge with the outflow of tannery ETPs.

Along these lines, new Ti (III)-based, Cr(III)-free, precursor tanning agents have been produced from metallurgic Industry end waste, aiming at the development of new tailored sustainable wet-white tanning chemistry that enables for the first time the in-situ generation of reactive Ti(IV)-tanning species, as a viable alternative to Cr(III), vegetable and syntan (pre)tanning agents. Hence, the principal axes of our synthetic approach, from product design phase to its industrial eventual application, have been: recovery and recycling of waste metals, simplicity and cost-effectiveness of the new tanning agent application, as well as closed loop processing, in order to protect the environment and improve the quality of life. Major challenges to match in our efforts remain commercial viability and consumer acceptability of the finished leather article.

The new tanning agents, in fact, will act as a prelude towards new eco-friendly leather manufacture, in which no potentially toxic, noxious and harmful chemicals have been used and discharged – currently and according to the Environmental Reports of the
Tanning Sector 30-40% of chemicals used during leather manufacture are characterised as potentially toxic or hazardous.

MATERIALS AND METHODS

Raw and Auxiliary Materials

Solid Titanium waste (filings); aluminum sulphate, (SR EN 878/2004); sodium citrate (STF 116/2000); sodium tartrate (STF 34/199); ammonium sulfate (STAS 450-1975) Magnesium oxide (STAS 4995-1980); sulphuric acid (95-97% -STAS 97-1980).

Bovine Pelts

For all tanning trials bovine pickled pelts of Romanian origin, with mean weights ranging from 20-25 kg were used (pH ca. 3.0).

Ti-based Agents Synthesis

For the solubilisation of Titanium waste and in order to obtain tanning compounds was used a glass reaction vessel equipped with a VELP SCIENTIFIC mechanical stirrer. In-house design laboratory equipment with vacuum ILMVAC type was used for the filtration of Titanium solution resulted by dissolving wastes. The pH of the tanning bath was determined using a calibrated for this purpose WTW- INOLAB pH LEVEL 2 digital pH-meter.

Metal Content in Ti-end Waste

Metals’ content was determined using plasma emission spectroscopy device (ICP-SPECTRO) and an in-house protocol for this purpose.

Hydrothermal Stability Measurements of Prototype Leathers

Wet-white and control prototype leathers thermal analysis was carried out using (i) a Differential scanning calorimeter (204 F1 PHONIX-NETZSCH. To determine the curves of heat of enthalpy change as a function of the temperature a Perkin-Elmer DSC 7 calorimeter was used. Each sample was weighed (3-6 mg) and placed in an Aluminum crucible. Thermal effects were measured against a similar empty crucible in the calorimeter at room temperature while nitrogen was purged, and heated in the temperature range 50-260°C. On the other hand, shrinkage temperature measurements were recorded within the range 22-to-100°C at a heating rate of 2 degree/min.

RESULTS AND DISCUSSION

Synthesis of New Mixed Ti-Al Tanning Agents from Metallurgic End Waste

The main classification criterion for titanium wastes was their contaminant level (Buzatu M., 1994). The highest contaminant level in titanium wastes and titanium alloys is in cuttings resulting from the mechanical processing of ingots and cast articles (Figure 1).
Basic metal composition of the Titanium wastes (filings) used as raw materials for the production of the new Ti (III) tanning agents is given in Table 1.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Ti</th>
<th>Al</th>
<th>V</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>89-95</td>
<td>1-6</td>
<td>0,1-4</td>
<td>0,0001-0,0005</td>
</tr>
</tbody>
</table>

The Aluminum salt used was Al$_2$(SO$_4$)$_3$. 18 H$_2$O (15.3% Al$_2$O$_3$, 8.55% Al). The schematic outline of the synthetic pathway designed and applied for the generation of the mixed new tanning agents based on Titanium and Aluminum is shown in Figure 2 (Crudu M. et al., 2008, 2009). The results of chemical analysis carried out for the novel tanning agents' solution and powder form are reported in Table 2.
Table 2. Chemical analysis of the Tanning agents

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Solution</th>
<th>Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>1.25 – 1.45</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>1.8 – 2.3</td>
<td></td>
</tr>
<tr>
<td>Total ash (g/dm³)</td>
<td>75 – 140</td>
<td></td>
</tr>
<tr>
<td>Total metal oxides content (g/dm³)</td>
<td>65-130</td>
<td></td>
</tr>
<tr>
<td>Total metal oxides, %</td>
<td>-</td>
<td>13-18</td>
</tr>
<tr>
<td>pH (1:10)</td>
<td>-</td>
<td>1.8 – 2.3</td>
</tr>
</tbody>
</table>

The evaluation new tanning agents’, and in particular topographic distribution – mapping - of the metal species, was obtained by means of scanning electron microscopic (SEM) and energy dispersive X-ray (EDAX) analyses (Figure 3).

New Wet-White Leathers Characterization and Evaluation

Full thickness semi-processed tanned leathers resulting from application of the new Titanium-Aluminum tanning agents as described here is white, with a smooth grain full and supple, as shown with the photographic image in Figure 4.

Shrinkage temperature values determined for the different new tanning agent variants ranged from 68-82°C, whereas wet white leathers were successfully processed through the subsequent mechanical operations of splitting – easily grain, middle and bottom split were obtained, as well as shaving, as demonstrated with the photographic image of Figure 5.
New Wet White Tanning Agents and Technology

Good hydrothermal stability of the prototype leathers was confirmed with measurements undertaken using the Micro-Hot table device, with $T_s=70-80^\circ C$, as shown in Figure 6.

<table>
<thead>
<tr>
<th>T_m</th>
<th>A1</th>
<th>B1</th>
<th>C</th>
<th>B2</th>
<th>A2</th>
<th>T_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>69.7</td>
<td>72.7</td>
<td>76.1</td>
<td>79.1</td>
<td>80.0</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Figure 6. Determination of shrinkage temperature by MHT method

Another confirmation of the thermal behavior of the new semi-wet type of leather tanned with white pre-tanning agents was obtained by using DSC analysis (differential scanning calorimetric dynamic analysis). A typical example of the thermographs recorded for samples taken from the prototype wet-white leathers tanned with the new Ti-Al based tanning agents is shown in the Figure 7.

Figure 7. DSC-thermograph for wet-white tanned with the new Ti-Al tanning agents

The endothermic transitions recorded for the new wet white leathers consists of at least three (3) peaks, indicative of consecutive denaturation processes. The first transition is recorded for temperatures within the range 50°C and 125°C. A second set of peaks is registered for temperature values between 130° and 250°C, strongly linked to the processing history of the material (in particular the degree of tanning); the denaturation process occurring can be tentatively explained by the crystalline-amorphous two-phase model of collagenic materials. According to this model the super-coiled triple-α helix is partially crystalline and embedded in an amorphous matrix. Consequently, the minimum of endotherm II is associated with uncoiling / melting of the crystalline region. In turn, the tanning process by inducing the formation of synthetic crosslinks, can result in increased stiffness of the matrix, and, thus, is responsible for the observed shift of the melting process to higher temperature values. Monitoring the temperatures at which process II occurs may, therefore, reveals the
degree and effectiveness of tanning, whereas for leathers tanned with Cr(III)–salts the second peak is not visible as it overlaps with the pyrolytic transition. Hence, DSC thermographs, as those recorded for wet-white prototype leathers and shown in Figure 5 are specific to each material and can be used as material –specific and unique «fingerprints» (Budrugeac, P. 2004). In order to characterize the new wet-white leather and prove the tanning potential of the newly synthesised compounds, chemical analyses has been carried out both on the split and grain layers of the product leathers and the results obtained are shown in Table 3.

Table 3. Wet-white grain and split leather chemical analyses

<table>
<thead>
<tr>
<th>No.</th>
<th>Characteristics</th>
<th>Grain (%)</th>
<th>Split (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Volatile matters, (%)</td>
<td>53.1</td>
<td>51.2</td>
</tr>
<tr>
<td>2.</td>
<td>Extractible, (%)</td>
<td>1.58</td>
<td>2.35</td>
</tr>
<tr>
<td>3.</td>
<td>Ash, (%)</td>
<td>10.4</td>
<td>10.9</td>
</tr>
<tr>
<td>4.</td>
<td>Metal Oxides, (%)</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>5.</td>
<td>Shrinkage temperature, (°C)</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>6.</td>
<td>Shrinkage temperature, (°C-MHT method)</td>
<td>76.1</td>
<td>73.9</td>
</tr>
<tr>
<td>7.</td>
<td>pH of water extract</td>
<td>3.98</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Similar analytical values obtained for both layers tested have led to the conclusion that the penetration of the new tanning agents was not only complete but also uniform, assuring sufficient stabilization of the wet-white for further mechanical or other chemical processing. The evaluation of the modification of collagen by new tanning agents, and in particular topographic distribution mapping of the metal species in the prototype leathers, was obtained by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). (Figure 8).

Figure 8. Mineral species topographic mapping

Figure 9. EDAX mapping of split

Figure 10. SEM – image of grain split of wet white leathers

Figure 11. SEM – image of the bottom split of wet white leathers
CONCLUSIONS

Exploring the valorisation of solid Titanium metallurgic end wastes, as a low cost raw material has yielded new tanning agents for the replacement of Cr(III) tanning salts, a hitherto unthinkable or non technically feasible mission. In turn, as demonstrated here it is plausible to:

- increase of eco-efficiency in the leather manufacturing sector by making use of solid wastes, which cannot be recycled in the industry that generated them;
- total or partial replacement of chromium salts in the tanning process with cheap to produce and easy to apply in rapid full substance bovine leather manufacture, that, in turn required minimum process rationalisation or modification; moreover, the new mineral tanning agents are free of restricted or regulated metals Cr, Pb, Cd, Hg and Ni;
- increase in articles diversity.

The experimental results obtained so far in pretanning trials, are a clear witness that it is now possible at pilot scale to produce full substance bovine wet white with the desired smooth grain, that possesses the minimum hydrothermal stability for subsequent mechanical processing and further R&D ought to be carried out aiming at:

- improving the methods of waste processing to make them more efficient;
- a complete survey of environmental impact and LCIA of the products, effluent and waste generated;
- obtaining quantitative yield and costing data from large scale lots;
- the diversification and rendering more efficient the tanning materials, application processes, and wet-white leather semi-processed commodity products.

Acknowledgements

This work has been financed by the European Fund for Regional Development and the Romanian Government in the framework of Sectoral Operational Programme under the project INNOVA-LEATHER: «Innovative technologies for leather sector increasing technological competitiveness by RDI, quality of life and environmental protection» – contract POS CCE-AXA 2-O 2.1.2 nr. 242/20.09.2010 ID 638 COD SMIS – CSNR 12579.

REFERENCES

